Search results
Results from the WOW.Com Content Network
DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells.
Nanotechnology is a modern field that has yet to be fully understood. Nanorulers allow scientists to investigate the fundamental building blocks of matter, including atoms and molecules, which is essential for advancing our knowledge of the physical and chemical properties of materials.
The concepts of DNA nanotechnology later found further applications in DNA computing, [9] DNA nanorobotics, and self-assembly of nanoelectronics. [10] He shared the Kavli Prize in Nanoscience 2010 with Donald Eigler “for their development of unprecedented methods to control matter on the nanoscale.” [ 10 ] [ 11 ] He was a fellow of the ...
DNA nanotechnology has been applied to the related field of DNA computing. DNA tiles can be designed to contain multiple sticky ends with sequences chosen so that they act as Wang tiles . A DX array has been demonstrated whose assembly encodes an XOR operation; this allows the DNA array to implement a cellular automaton which generates a ...
Due to their structure and function, SNAs occupy a materials space distinct from DNA nanotechnology and DNA origami, [20] [21] (although both are important to the field of nucleic acid–guided programmable materials. [22] With DNA origami, such structures are synthesized via DNA hybridization events.
Nanopore sequencing took 25 years to materialize. David Deamer was one of the first to push the idea. In 1989 he sketched out a plan to push single-strands of DNA through a protein nanopore embedded into a thin membrane as part his work to synthesize RNA.
Nucleic acid design is central to the fields of DNA nanotechnology and DNA computing. [2] It is necessary because there are many possible sequences of nucleic acid strands that will fold into a given secondary structure , but many of these sequences will have undesired additional interactions which must be avoided.
In 2006, the U.S. National Academy of Sciences released the report of a study of molecular manufacturing (not molecular assemblers per se) as part of a longer report, A Matter of Size: Triennial Review of the National Nanotechnology Initiative [19] The study committee reviewed the technical content of Nanosystems, and in its conclusion states ...