Search results
Results from the WOW.Com Content Network
The numerical values for latitude and longitude can occur in a number of different units or formats: [2] sexagesimal degree: degrees, minutes, and seconds : 40° 26′ 46″ N 79° 58′ 56″ W; degrees and decimal minutes: 40° 26.767′ N 79° 58.933′ W; decimal degrees: +40.446 -79.982; There are 60 minutes in a degree and 60 seconds in a ...
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The equator is divided into 360 degrees of longitude, so each degree at the equator represents 111,319.5 metres (365,221 ft). As one moves away from the equator towards a pole, however, one degree of longitude is multiplied by the cosine of the latitude, decreasing the distance, approaching zero at the pole.
The geocentric latitude is the angle between the equatorial plane and the radius from the centre to a point of interest. When the point is on the surface of the ellipsoid, the relation between the geocentric latitude (θ) and the geodetic latitude (ϕ) is:
The latitude φ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth. [note 2] Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the Equator and to each ...
The WGS 84 meridian of zero longitude is the IERS Reference Meridian, [8] 5.3 arc seconds or 102 metres (335 ft) east of the Greenwich meridian at the latitude of the Royal Observatory. [ 9 ] [ 10 ] (This is related to the fact that the local gravity field at Greenwich does not point exactly through the Earth's center of mass, but rather ...
The geocentric altitude is a type of altitude defined as the difference between the two aforementioned quantities: h ′ = R − R 0; [3] it is not to be confused for the geodetic altitude. Conversions between ECEF and geodetic coordinates (latitude and longitude) are discussed at geographic coordinate conversion.
The length of a degree of longitude (east–west distance) depends only on the radius of a circle of latitude. For a sphere of radius a that radius at latitude φ is a cos φ, and the length of a one-degree (or π / 180 radian) arc along a circle of latitude is