Search results
Results from the WOW.Com Content Network
In aeronautical engineering, overall pressure ratio, or overall compression ratio, is the amount of times the pressure increases due to ram compression and the work done by the compressor stages. The compressor pressure ratio is the ratio of the stagnation pressures at the front and rear of the compressor of a gas turbine .
where γ is the heat capacity ratio, α is the volumetric coefficient of thermal expansion, ρ = N/V is the particle density, and = (/) is the thermal pressure coefficient. In an extensive thermodynamic system, the application of statistical mechanics shows that the isothermal compressibility is also related to the relative size of fluctuations ...
For example, if the static compression ratio is 10:1, and the dynamic compression ratio is 7.5:1, a useful value for cylinder pressure would be 7.5 1.3 × atmospheric pressure, or 13.7 bar (relative to atmospheric pressure). The two corrections for dynamic compression ratio affect cylinder pressure in opposite directions, but not in equal strength.
This pressure distribution is simply the pressure at all points around an airfoil. Typically, graphs of these distributions are drawn so that negative numbers are higher on the graph, as the C p {\displaystyle C_{p}} for the upper surface of the airfoil will usually be farther below zero and will hence be the top line on the graph.
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]
Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather . If the entire mass of the atmosphere had a uniform density equal to sea-level density (about 1.2 kg/m 3 ) from sea level upwards, it would terminate abruptly at an altitude of 8.50 ...
In his 1803 publication about the quantity of gases absorbed by water, [1] William Henry described the results of his experiments: … water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.
The amount of energy required to warm one gram of air-free water from 3.5 to 4.5 °C at standard atmospheric pressure. [b] 15 °C calorie: cal 15: ≈ 4.1855 J ≈ 0.003 9671 BTU ≈ 1.1626 × 10 −6 kW⋅h ≈ 2.6124 × 10 19 eV The amount of energy required to warm one gram of air-free water from 14.5 to 15.5 °C at standard atmospheric ...