enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coaxial cable - Wikipedia

    en.wikipedia.org/wiki/Coaxial_cable

    Coaxial cable, or coax (pronounced / ˈ k oʊ. æ k s /), is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric (insulating material); many coaxial cables also have a protective outer sheath or jacket.

  3. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    Four stages of skin effect in a coax showing the effect on inductance. Diagrams show a cross-section of the coaxial cable. Color code: black = overall insulating sheath, tan = conductor, white = dielectric, green = current into the diagram, blue = current coming out of the diagram, dashed black lines with arrowheads = magnetic flux (B). The ...

  4. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    The characteristic impedance of coaxial cables (coax) is commonly chosen to be 50 Ω for RF and microwave applications. Coax for video applications is usually 75 Ω for its lower loss. See also: Nominal impedance § 50 Ω and 75 Ω

  5. Standing wave ratio - Wikipedia

    en.wikipedia.org/wiki/Standing_wave_ratio

    However the same 6:1 mismatch through 75 meters of RG-8A coax would incur 10.8 dB of loss at 146 MHz. [ 5 ] (pp19.4–19.6) Thus, a better match of the antenna to the feed line, that is, a lower SWR, becomes increasingly important with increasing frequency, even if the transmitter is able to accommodate the impedance seen (or an antenna tuner ...

  6. Transmission line - Wikipedia

    en.wikipedia.org/wiki/Transmission_line

    The total loss of power in a transmission line is often specified in decibels per metre (dB/m), and usually depends on the frequency of the signal. The manufacturer often supplies a chart showing the loss in dB/m at a range of frequencies. A loss of 3 dB corresponds approximately to a halving of the power.

  7. Impedance matching - Wikipedia

    en.wikipedia.org/wiki/Impedance_matching

    To match the impedances, both cables must be connected to a matching transformer with a turns ratio of 2:1. In this example, the 300-ohm line is connected to the transformer side with more turns; the 75-ohm cable is connected to the transformer side with fewer turns. The formula for calculating the transformer turns ratio for this example is:

  8. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.

  9. Twin-lead - Wikipedia

    en.wikipedia.org/wiki/Twin-lead

    Twin lead cable is a two-conductor flat cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two, stranded copper wires, or solid copper-clad steel wires. The wires are held a fixed distance apart by a plastic ribbon that is a good insulator at radio frequencies (usually polyethylene).