enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Fig 1-1. Position vs. time graph. In the study of 1-dimensional kinematics, position vs. time graphs (called x-t graphs for short) provide a useful means to describe motion. Kinematic features besides the object's position are visible by the slope and shape of the lines. [1]

  3. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  4. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The last expression is the second derivative of position (x) with respect to time. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the ...

  5. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  6. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Absement changes as an object remains displaced and stays constant as the object resides at the initial position. It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement.

  7. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    [citation needed] However, time derivatives of position of higher order than four appear rarely. [14] The terms snap, crackle, and pop‍—‌for the fourth, fifth, and sixth derivatives of position‍—‌were inspired by the advertising mascots Snap, Crackle, and Pop. [13]

  8. Long position vs. short position: What’s the difference in ...

    www.aol.com/finance/long-position-vs-short...

    Being short a stock means that you have a negative position in the stock and will profit if the stock falls. Being long a stock is straightforward: You purchase shares in the company and you’re ...

  9. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.