Search results
Results from the WOW.Com Content Network
There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0.
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
The Whewell equation of a plane curve is an equation that relates the tangential angle (φ) with arc length (s), where the tangential angle is the angle between the tangent to the curve at some point and the x-axis, and the arc length is the distance along the curve from a fixed point.
As an example, a curve with an arc length of 600 units that has an overall sweep of 6 degrees is a 1-degree curve: For every 100 feet of arc, the bearing changes by 1 degree. The radius of such a curve is 5729.57795.
In all these formulae (h, k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points ( −a , 0) and (0 , −a ) , respectively, are not represented by a real value of t , but are the limit of x and y as t tends ...
The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk.
A curve can be described, and thereby defined, by a pair of scalar fields: curvature and torsion , both of which depend on some parameter which parametrizes the curve but which can ideally be the arc length of the curve.
Therefore an intrinsic equation defines the shape of the curve without specifying its position relative to an arbitrarily defined coordinate system. The intrinsic quantities used most often are arc length s {\displaystyle s} , tangential angle θ {\displaystyle \theta } , curvature κ {\displaystyle \kappa } or radius of curvature , and, for 3 ...