Search results
Results from the WOW.Com Content Network
Arsenic trioxide powder.. Compounds of arsenic resemble in some respects those of phosphorus which occupies the same group (column) of the periodic table.The most common oxidation states for arsenic are: −3 in the arsenides, which are alloy-like intermetallic compounds, +3 in the arsenites, and +5 in the arsenates and most organoarsenic compounds.
Arsenic is a common n-type dopant in semiconductor electronic devices. It is also a component of the III–V compound semiconductor gallium arsenide. Arsenic and its compounds, especially the trioxide, are used in the production of pesticides, treated wood products, herbicides, and insecticides. These applications are declining with the ...
In its standard state arsine is a colorless, denser-than-air gas that is slightly soluble in water (2% at 20 °C) [1] and in many organic solvents as well. [citation needed] Arsine itself is odorless, [5] but it oxidizes in air and this creates a slight garlic or fish-like scent when the compound is present above 0.5 ppm. [6]
Bonding in arsenate consists of a central arsenic atom, with oxidation state +5, double bonded to one oxygen atom and single bonded to a further three oxygen atoms. [2] The four oxygen atoms orient around the arsenic atom in a tetrahedral geometry. [2] Resonance disperses the ion's −3 charge across all four oxygen atoms.
Black arsenic has as-yet been synthesized only in the presence of atomic impurities including mercury, [5] phosphorus, and oxygen, though a pure form of black arsenic was found in the Copiapó region of Chile. Mechanical exfoliation of the mineral found in Chilean caves, arsenolamprite, revealed a molecular structure with high in-phase ...
Similarly, realgar has arsenic–arsenic bonds, so the arsenic's oxidation state is +II. A corresponding compound for antimony is Sb 2 (C 6 H 5) 4, where the antimony's oxidation state is +II. Phosphorus has the +1 oxidation state in hypophosphorous acid and the +4 oxidation state in hypophosphoric acid.
Arsenic (III) binding sites usually use thiol groups of cysteine residues. The catalysis involves thiolates of Cys72, Cys174, and Cys224. In an SN2 reaction, the positive charge on the SAM sulfur atom pulls the bonding electron from the carbon of the methyl group, which interacts with the arsenic lone pair to form an As−C bond, leaving SAH. [31]
Oxyarsenides or arsenide oxides are chemical compounds formally containing the group AsO, with one arsenic and one oxygen atom. The arsenic and oxygen are not bound together as in arsenates or arsenites, instead they make a separate presence bound to the cations (metals), and could be considered as a mixed arsenide-oxide compound.