enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    While base ten is normally used for scientific notation, powers of other bases can be used too, [25] base 2 being the next most commonly used one. For example, in base-2 scientific notation, the number 1001 b in binary (=9 d) is written as 1.001 b × 2 d 11 b or 1.001 b × 10 b 11 b using binary numbers (or shorter 1.001 × 10 11 if binary ...

  3. Engineering notation - Wikipedia

    en.wikipedia.org/wiki/Engineering_notation

    Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Analogous to scientific notation, where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point". We simply multiply by the appropriate power of 2 to compensate for shifting the bits left by three positions:

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Here we can show how to convert a base-10 real number into an IEEE 754 binary32 format using the following outline: Consider a real number with an integer and a fraction part such as 12.375; Convert and normalize the integer part into binary; Convert the fraction part using the following technique as shown here

  6. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    Its integer part is the largest exponent shown on the output of a value in scientific notation with one leading digit in the significand before the decimal point (e.g. 1.698·10 38 is near the largest value in binary32, 9.999999·10 96 is the largest value in decimal32).

  7. Decade (log scale) - Wikipedia

    en.wikipedia.org/wiki/Decade_(log_scale)

    When a real number like .007 is denoted alternatively by 7.0 × 10 —3 then it is said that the number is represented in scientific notation.More generally, to write a number in the form a × 10 b, where 1 <= a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent. [3]

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    As a power of ten, the scaling factor is then indicated separately at the end of the number. For example, the orbital period of Jupiter's moon Io is 152,853.5047 seconds, a value that would be represented in standard-form scientific notation as 1.528535047 × 10 5 seconds. Floating-point representation is similar in concept to scientific notation.

  9. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    To compare numbers in scientific notation, say 5×10 4 and 2×10 5, compare the exponents first, in this case 5 > 4, so 2×10 5 > 5×10 4. If the exponents are equal, the mantissa (or coefficient) should be compared, thus 5×10 4 > 2×10 4 because 5 > 2.