Search results
Results from the WOW.Com Content Network
Atmospheric pressure decreases following the Barometric formula with altitude while the O 2 fraction remains constant to about 100 km (62 mi), so pO 2 decreases with altitude as well. It is about half of its sea-level value at 5,000 m (16,000 ft), the altitude of the Everest Base Camp , and only a third at 8,848 m (29,029 ft), the summit of ...
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]
The people of the Ethiopian highlands also live at extremely high altitudes, around 3,000 meters (9,800 ft) to 3,500 meters (11,500 ft). Highland Ethiopians exhibit elevated hemoglobin levels, like Andeans and lowlander humans at high altitudes, but do not exhibit the Andeans’ increase in oxygen content of hemoglobin. [ 49 ]
A pressure of 6.3 kPa—the Armstrong limit—is about 1/16 of the standard sea-level atmospheric pressure of 101.3 kilopascals (760 mmHg). At higher altitudes water vapour from ebullism will add to the decompression bubbles of nitrogen gas and cause the body tissues to swell up, though the tissues and the skin are strong enough not to burst ...
The French meteorologist Léon Teisserenc de Bort was the first in 1881 to apply this term to maxima and minima of pressure on daily charts. The main centers of action in the Northern Hemisphere are the Icelandic Low , the Aleutian Low , the Azores/Bermuda High , the Pacific High , the Siberian High (in winter), and the Asiatic Low (in summer ...
In fluid dynamics, the Hagen–Poiseuille equation is a physical law that gives the pressure drop in a fluid flowing through a long cylindrical pipe. The assumptions of the equation are that the flow is laminar viscous and incompressible and the flow is through a constant circular cross-section that is substantially longer than its diameter.
However, when the atmospheric pressure (and therefore the partial pressure of O 2 in the ambient air) falls to below 50-75% of its value at sea level, oxygen homeostasis is given priority over carbon dioxide homeostasis. [6] This switch-over occurs at an elevation of about 2500 m (or about 8000 ft).
High-altitude mountaineering can induce pulmonary hypoxia due to decreased atmospheric pressure. This hypoxia causes vasoconstriction that ultimately leads to high altitude pulmonary edema (HAPE). For this reason, some climbers carry supplemental oxygen to prevent hypoxia, edema, and HAPE.