enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The curvature is the norm of the derivative of T with respect to s. By using the above formula and the chain rule this derivative and its norm can be expressed in terms of γ′ and γ″ only, with the arc-length parameter s completely eliminated, giving the above formulas for the curvature.

  3. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  4. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.

  5. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    A standard proof uses Hilbert's lemma that non-umbilical points of extreme principal curvature have non-positive Gaussian curvature. [ 3 ] Hilbert's theorem (1901) states that there exists no complete analytic (class C ω ) regular surface in R 3 of constant negative Gaussian curvature.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which appeared in ...

  7. Euler's theorem (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem...

    In the mathematical field of differential geometry, Euler's theorem is a result on the curvature of curves on a surface. The theorem establishes the existence of principal curvatures and associated principal directions which give the directions in which the surface curves the most and the least.

  8. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  9. Fundamental theorem of curves - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_curves

    In differential geometry, the fundamental theorem of space curves states that every regular curve in three-dimensional space, with non-zero curvature, has its shape (and size or scale) completely determined by its curvature and torsion. [1] [2]