Search results
Results from the WOW.Com Content Network
In microeconomics, marginal profit is the increment to profit resulting from a unit or infinitesimal increment to the quantity of a product produced. Under the marginal approach to profit maximization, to maximize profits, a firm should continue to produce a good or service up to the point where marginal profit is zero. At any lesser quantity ...
or "marginal revenue" = "marginal cost". A firm with market power will set a price and production quantity such that marginal cost equals marginal revenue. A competitive firm's marginal revenue is the price it gets for its product, and so it will equate marginal cost to price.
The marginal cost can also be calculated by finding the derivative of total cost or variable cost. Either of these derivatives work because the total cost includes variable cost and fixed cost, but fixed cost is a constant with a derivative of 0.
Profit maximization requires that a firm produces where marginal revenue equals marginal costs. Firm managers are unlikely to have complete information concerning their marginal revenue function or their marginal costs. However, the profit maximization conditions can be expressed in a “more easily applicable form”: MR = MC, MR = P(1 + 1/e),
This signifies that output (Q) is dependent on a function of all variable (L) and fixed (K) inputs in the production process. This is the basis to understand. What is important to understand after this is the math behind marginal product. MP= ΔTP/ ΔL. [21] This formula is important to relate back to diminishing rates of return.
If the marginal revenue is greater than the marginal cost (>), then its total profit is not maximized, because the firm can produce additional units to earn additional profit. In other words, in this case, it is in the "rational" interest of the firm to increase its output level until its total profit is maximized.
Note the strange presence of 'x' in the model. Notice also that the absorption model (equation 10) is the same as the marginal costing model (equation 9) except for the end part: F/x p * (q-x 1) This part represents the fixed costs in stock. This is better seen by remem¬bering q — x= go—g1 so it could be written F/x p • (g 0 —g 1)
Under certain assumptions, the production function can be used to derive a marginal product for each factor. The profit-maximizing firm in perfect competition (taking output and input prices as given) will choose to add input right up to the point where the marginal cost of additional input matches the marginal product in additional output.