Search results
Results from the WOW.Com Content Network
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
The same is true for not less than, . The notation a ≠ b means that a is not equal to b; this inequation sometimes is considered a form of strict inequality. [4] It does not say that one is greater than the other; it does not even require a and b to be member of an ordered set. In engineering sciences, less formal use of the notation is to ...
Intuitively, the Spearman correlation between two variables will be high when observations have a similar (or identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have a dissimilar (or fully opposed for a ...
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
For any greater-than constraints, introduce surplus s i and artificial variables a i (as shown below). Choose a large positive Value M and introduce a term in the objective of the form −M multiplying the artificial variables. For less-than or equal constraints, introduce slack variables s i so that all constraints are equalities.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]