enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    An involution is non-defective, and each eigenvalue equals , so an involution diagonalizes to a signature matrix. A normal involution is Hermitian (complex) or symmetric (real) and also unitary (complex) or orthogonal (real). The determinant of an involutory matrix over any field is ±1. [4]

  3. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    If A represents a linear involution, then x→A(x−b)+b is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through n hyperplanes going through a point b.

  4. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  5. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Download QR code; Print/export ... (i.e. an involution). ... a map is anticonformal if at every point the Jacobian is a scalar times an orthogonal matrix with ...

  6. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    As the involution is antilinear, it cannot be the identity map on . Of course, φ {\textstyle \varphi } is a R {\textstyle \mathbb {R} } -linear transformation of V , {\textstyle V,} if one notes that every complex space V {\displaystyle V} has a real form obtained by taking the same vectors as in the original space and restricting the scalars ...

  7. Cayley–Dickson construction - Wikipedia

    en.wikipedia.org/wiki/Cayley–Dickson_construction

    In this construction, A is an algebra with involution, meaning: A is an abelian group under + A has a product that is left and right distributive over + A has an involution *, with (x*)* = x, (x + y)* = x* + y*, (xy)* = y*x*. The algebra B = A ⊕ A produced by the Cayley–Dickson construction is also an algebra with involution.

  8. Binomial transform - Wikipedia

    en.wikipedia.org/wiki/Binomial_transform

    Download QR code; Print/export ... where T is an infinite-dimensional operator with matrix elements T nk. The transform is an involution, ...

  9. C*-algebra - Wikipedia

    en.wikipedia.org/wiki/C*-algebra

    It is also closed under involution; hence it is a C*-algebra. Concrete C*-algebras of compact operators admit a characterization similar to Wedderburn's theorem for finite dimensional C*-algebras: Theorem. If A is a C*-subalgebra of K(H), then there exists Hilbert spaces {H i} i∈I such that