enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  3. Pochhammer k-symbol - Wikipedia

    en.wikipedia.org/wiki/Pochhammer_k-symbol

    Special cases of the Pochhammer k-symbol, (),, correspond to the following special cases of the falling and rising factorials, including the Pochhammer symbol, and the generalized cases of the multiple factorial functions (multifactorial functions), or the -factorial functions studied in the last two references by Schmidt:

  4. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function. In the lambda calculus there are a number of combinators (implementations) that satisfy the mathematical definition of a fixed-point combinator.

  5. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It appears as a factor in various probability-distribution functions and other formulas in the fields of probability , statistics , analytic number theory , and combinatorics .

  6. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    The ordinary factorial, when extended to the gamma function, has a pole at each negative integer, preventing the factorial from being defined at these numbers. However, the double factorial of odd numbers may be extended to any negative odd integer argument by inverting its recurrence relation n ! ! = n × ( n − 2 ) ! ! {\displaystyle n!!=n ...

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    For all positive integers, ! = (+), where Γ denotes the gamma function. However, the gamma function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied.

  9. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n, until reaching the base case, analogously to the mathematical definition of factorial. Recursion in computer programming is exemplified when a function is defined in terms of simpler, often smaller versions of ...