Search results
Results from the WOW.Com Content Network
Stable isotopes do not decay, and the heavy and light isotope masses affect how they partition within the environment. Any deviation from a random distribution of the light and heavy isotopes within the environment is called fractionation, and consistent fractionations as a result of a particular process or reaction are called "isotope effects."
The stable alpha elements are: C, O, Ne, Mg, Si, and S. The elements Ar and Ca are "observationally stable". They are synthesized by alpha capture prior to the silicon fusing stage, that leads to Type II supernovae. Si and Ca are purely alpha process elements. Mg can be separately consumed by proton capture reactions.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those that had formed earlier.
Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. [1] The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium (atomic number 103).
Even though the half-lives of these nuclei are very short (on the order of seconds), [40] the very existence of elements heavier than rutherfordium is indicative of stabilizing effects thought to be caused by closed shells; a model not considering such effects would forbid the existence of these elements due to rapid spontaneous fission. [19]
In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced by the p-process and s-process.
Moscovium and livermorium are expected to be volatile enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental ...