Search results
Results from the WOW.Com Content Network
Image derivatives can be computed by using small convolution filters of size 2 × 2 or 3 × 3, such as the Laplacian, Sobel, Roberts and Prewitt operators. [1] However, a larger mask will generally give a better approximation of the derivative and examples of such filters are Gaussian derivatives [2] and Gabor filters. [3]
The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA.
If x is itself suitably differentiable, then from the properties of convolution, one has {} = () = {()}where denotes the derivative operator. Specifically, this holds if x is a compactly supported distribution or lies in the Sobolev space W 1,1 to ensure that the derivative is sufficiently regular for the convolution to be well-defined.
Progress of replication forks is inhibited by many factors; collision with proteins or with complexes binding strongly on DNA, deficiency of dNTPs, nicks on template DNAs and so on. If replication forks get stuck and the rest of the sequences from the stuck forks are not copied, then the daughter strands get nick nick unreplicated sites.
Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.
Replication of DNA always begins at an origin of replication. In yeast, the origins contain autonomously replicating sequences (ARS), distributed throughout the chromosome about 30 kb from each other. They allow replication of DNA wherever they are placed. Each one is 100-200 bp long, and the A element is one of the most conserved stretches.
Rolling hairpin replication (RHR) is a unidirectional, strand displacement form of DNA replication used by parvoviruses, a group of viruses that constitute the family Parvoviridae. Parvoviruses have linear, single-stranded DNA (ssDNA) genomes in which the coding portion of the genome is flanked by telomeres at each end that form hairpin loops .
Von Neumann's System of Self-Replication Automata with the ability to evolve (Figure adapted from Luis Rocha's Lecture Notes at Binghamton University [6]).i) the self-replicating system is composed of several automata plus a separate description (an encoding formalized as a Turing 'tape') of all the automata: Universal Constructor (A), Universal Copier (B), operating system (C), extra ...