Search results
Results from the WOW.Com Content Network
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
Fractional programming — objective is ratio of nonlinear functions, constraints are linear; Nonlinear complementarity problem (NCP) — find x such that x ≥ 0, f(x) ≥ 0 and x T f(x) = 0; Least squares — the objective function is a sum of squares Non-linear least squares; Gauss–Newton algorithm. BHHH algorithm — variant of Gauss ...
Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x). Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E( y | x ) is linear in the unknown parameters ...
In nonparametric regression, we have random variables and and assume the following relationship: [=] = (),where () is some deterministic function. Linear regression is a restricted case of nonparametric regression where () is assumed to be affine.
The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
Although the polynomial function is a perfect fit, the linear function can be expected to generalize better: If the two functions were used to extrapolate beyond the fitted data, the linear function should make better predictions. Figure 3. The blue dashed line represents an underfitted model. A straight line can never fit a parabola.