enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...

  3. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    A cube with unit side length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube was discovered in antiquity.

  4. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    If (a, b, c) is a solution, then (ka, kb, kc) is also a solution for any k.Consequently, the solutions in rational numbers are all rescalings of integer solutions. Given an Euler brick with edge-lengths (a, b, c), the triple (bc, ac, ab) constitutes an Euler brick as well.

  5. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  6. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  7. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The Dalí cross, a net of a tesseract The tesseract can be unfolded into eight cubes into 3D space, just as the cube can be unfolded into six squares into 2D space.. In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1]

  8. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    Doubling the cube, also known as the Delian problem, is an ancient [a] [1]: 9 geometric problem. Given the edge of a cube , the problem requires the construction of the edge of a second cube whose volume is double that of the first.

  9. Truncated cube - Wikipedia

    en.wikipedia.org/wiki/Truncated_cube

    3D model of a truncated cube. In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and δ S +1, where δ S is the silver ratio, √ 2 +1.