enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  3. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series forecasting is the use of a model to predict future values based on previously observed values. Generally, time series data is modelled as a stochastic ...

  4. Makridakis Competitions - Wikipedia

    en.wikipedia.org/wiki/Makridakis_Competitions

    The time series included yearly, quarterly, monthly, daily, and other time series. In order to ensure that enough data was available to develop an accurate forecasting model, minimum thresholds were set for the number of observations: 14 for yearly series, 16 for quarterly series, 48 for monthly series, and 60 for other series. [1]

  5. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [17]

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.

  7. Bayesian structural time series - Wikipedia

    en.wikipedia.org/.../Bayesian_structural_time_series

    Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...

  8. Forecast skill - Wikipedia

    en.wikipedia.org/wiki/Forecast_skill

    Forecasting skill metric and score calculations should be made over a large enough sample of forecast-observation pairs to be statistically robust. A sample of predictions for a single predictand (e.g., temperature at one location, or a single stock value) typically includes forecasts made on a number of different dates.

  9. Distributed lag - Wikipedia

    en.wikipedia.org/wiki/Distributed_lag

    Structured distributed lag models come in two types: finite and infinite. Infinite distributed lags allow the value of the independent variable at a particular time to influence the dependent variable infinitely far into the future, or to put it another way, they allow the current value of the dependent variable to be influenced by values of the independent variable that occurred infinitely ...