Search results
Results from the WOW.Com Content Network
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...
Such floating-point numbers are known as "reals" or "floats" in general, but with a number of variations: A 32-bit float value is sometimes called a "real32" or a "single", meaning "single-precision floating-point value". A 64-bit float is sometimes called a "real64" or a "double", meaning "double-precision floating-point value".
The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.
The minimum strictly positive (subnormal) value is 2 −262378 ≈ 10 −78984 and has a precision of only one bit. The minimum positive normal value is 2 −262142 ≈ 2.4824 × 10 −78913. The maximum representable value is 2 262144 − 2 261907 ≈ 1.6113 × 10 78913.
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. [1] For such cases, it is a more accurate measure than measuring instructions per second. [citation needed]
The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.