enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayesian statistics (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous ...

  3. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  4. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.

  5. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    In numerous publications on Bayesian experimental design, it is (often implicitly) assumed that all posterior probabilities will be approximately normal. This allows for the expected utility to be calculated using linear theory, averaging over the space of model parameters. [2]

  6. Bayesian cognitive science - Wikipedia

    en.wikipedia.org/wiki/Bayesian_cognitive_science

    Bayesian cognitive science, also known as computational cognitive science, is an approach to cognitive science concerned with the rational analysis [1] of cognition through the use of Bayesian inference and cognitive modeling. The term "computational" refers to the computational level of analysis as put forth by David Marr. [2]

  7. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  8. Bayesian learning mechanisms - Wikipedia

    en.wikipedia.org/wiki/Bayesian_learning_mechanisms

    Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]

  9. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    Bayesian statistics focuses so tightly on the posterior probability that it ignores the fundamental comparison of observations and model. [dubious – discuss] [29] Traditional observation-based models often fall short in addressing many significant problems, requiring the utilization of a broader range of models, including algorithmic ones.