Search results
Results from the WOW.Com Content Network
the magnetic field B changes (e.g. an alternating magnetic field, or moving a wire loop towards a bar magnet where the B field is stronger), the wire loop is deformed and the surface Σ changes, the orientation of the surface dA changes (e.g. spinning a wire loop into a fixed magnetic field), any combination of the above
The magnetic field lines of a current-carrying loop of wire pass through the center of the loop, concentrating the field there The magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field).
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
In more visual terms, the magnetic flux through the wire loop is proportional to the number of magnetic field lines that pass through the loop. When the flux changes—because B changes, or because the wire loop is moved or deformed, or both—Faraday's law of induction says that the wire loop acquires an emf , defined as the energy available ...
Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. [9]
The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses. The strength of the field is directly proportional to the magnitude of the current.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In physics, the weber (/ ˈ v eɪ b-, ˈ w ɛ b. ər / VAY-, WEH-bər; [1] [2] symbol: Wb) is the unit of magnetic flux in the International System of Units (SI). The unit is derived (through Faraday's law of induction) from the relationship 1 Wb = 1 V⋅s (volt-second). A magnetic flux density of 1 Wb/m 2 (one weber per square metre) is one tesla.