Search results
Results from the WOW.Com Content Network
The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.
A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than a straight angle ( π radians or 180°), then the polygon is called convex . In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an ...
A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists [11]: p.184, #286.3 a principal diagonal d 1 such that and a principal diagonal d 2 such that
Cell is the intersection of all of these half-spaces, and hence it is a convex polygon. [6] When two cells in the Voronoi diagram share a boundary, it is a line segment, ray, or line, consisting of all the points in the plane that are equidistant to their two nearest sites.
A set that is not convex is called a non-convex set. A polygon that is not a convex polygon is sometimes called a concave polygon, [4] and some sources more generally use the term concave set to mean a non-convex set, [5] but most authorities prohibit this usage. [6] [7]
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}.
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
The complete list of convex polygons that can tile the plane includes the above 15 pentagons, three types of hexagons, and all quadrilaterals and triangles. [5] A consequence of this proof is that no convex polygon exists that tiles the plane only aperiodically, since all of the above types allow for a periodic tiling.