enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.

  3. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets ⁡ ⁡ = ⁡ = ⁡ (⁡ ⁡ ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .

  4. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Cell is the intersection of all of these half-spaces, and hence it is a convex polygon. [6] When two cells in the Voronoi diagram share a boundary, it is a line segment, ray, or line, consisting of all the points in the plane that are equidistant to their two nearest sites.

  5. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.

  6. Convex polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_polygon

    The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.

  7. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra, of which all but the smallest one (which is a regular dodecahedron) have mostly hexagonal faces.

  8. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polygon is a planar figure with all edges equal and all corners equal. A regular polyhedron is a solid (convex) figure with all faces being congruent regular polygons, the same number arranged all alike around each vertex.

  9. Fundamental polygon - Wikipedia

    en.wikipedia.org/wiki/Fundamental_polygon

    In the case of genus one, a fundamental convex polygon is sought for the action by translation of Λ = Z a ⊕ Z b on R 2 = C where a and b are linearly independent over R. (After performing a real linear transformation on R 2, it can be assumed if necessary that Λ = Z 2 = Z + Z i; for a genus one Riemann surface it can be taken to have the form Λ = Z 2 = Z + Z ω, with Im ω > 0.)