Search results
Results from the WOW.Com Content Network
In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic [1] and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux (or power ) with respect to time .
In physics, electromagnetic radiation (EMR) is the set of waves of an electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. [ 1 ] [ 2 ] It encompasses a broad spectrum, classified by frequency and wavelength, ranging from radio waves , microwaves , infrared , visible light , ultraviolet ...
Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in astronomy. Spectral flux: Φ e,ν [nb 3] watt per hertz: W/Hz: M⋅L 2 ⋅T −2: Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm −1. Φ e,λ [nb 4] watt ...
The human equivalent assists understanding of energy flows in physical and biological systems by expressing energy units in human terms: it provides a "feel" for the use of a given amount of energy. [9] Sunlight's radiant energy is also captured by plants as chemical potential energy in photosynthesis, when carbon dioxide and water (two low ...
In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. [1] [2] This includes: electromagnetic radiation consisting of photons, such as radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma radiation (γ)
Energy of electromagnetic radiation. Radiant energy density: w e: joule per cubic metre J/m 3: M⋅L −1 ⋅T −2: Radiant energy per unit volume. Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called ...
Energy of electromagnetic radiation. Radiant energy density: w e: joule per cubic metre J/m 3: M⋅L −1 ⋅T −2: Radiant energy per unit volume. Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called ...