Search results
Results from the WOW.Com Content Network
The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse. The triangle shaded blue illustrates the identity 1 + cot 2 θ = csc 2 θ {\displaystyle 1+\cot ^{2}\theta =\csc ^{2}\theta } , and the red triangle shows that tan 2 θ + 1 = sec 2 θ {\displaystyle \tan ^{2 ...
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
The identities of logarithms can be used to approximate large numbers. Note that log b ( a ) + log b ( c ) = log b ( ac ) , where a , b , and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime , 2 32,582,657 −1 .
The identities above can be used with (and derived from) the fact that and are reciprocals (i.e. =), as are and , and and . Useful identities if one only has a fragment of a sine table:
Identity 1: + = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of + = by ; for the second, divide by .
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.