Search results
Results from the WOW.Com Content Network
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
Some amides can be reduced to aldehydes in the Sonn-Müller method, but most routes to aldehydes involve a well-chosen organometallic reductant. Lithium aluminum hydride reduces an excess of N,N-disubstituted amides to an aldehyde: [citation needed] R(CO)NRR' + LiAlH 4 → RCHO + HNRR' With further reduction the alcohol is obtained.
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
The core −C(=O)−(N) of amides is called the amide group (specifically, carboxamide group). In the usual nomenclature, one adds the term "amide" to the stem of the parent acid's name. For instance, the amide derived from acetic acid is named acetamide (CH 3 CONH 2). IUPAC recommends ethanamide, but this and related formal names are rarely ...
aldehydes 1725 influenced by conjugation (as with ketones) carboxylic acids/derivates saturated carboxylic acids 1710 unsat./aromatic carb. acids 1680–1690 esters and lactones: 1735 influenced by conjugation and ring size (as with ketones) anhydrides 1760 1820 acyl halides: 1800 amides: 1650 associated amides carboxylates (salts) 1550–1610
A general acyl group (blue) in a ketone (top left), as an acylium cation (top centre), as an acyl radical (top right), an aldehyde (bottom left), ester (bottom centre) or amide (bottom right). ( R 1 , R 2 and R 3 stands for organyl substituent or hydrogen in the case of R 1 )
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The pinacol reaction is extremely well-studied and tolerates many different reductants, including electrochemical syntheses.Variants are known for homo- and cross-coupling, intra- and inter-molecular reactions with appropriate diastereo- or enantioselectivity; [2] as of 2006, the only unsettled frontier was enantioselective cross-coupling of aliphatic aldehydes. [3]