Search results
Results from the WOW.Com Content Network
Connected porosity is more easily measured through the volume of gas or liquid that can flow into the rock, whereas fluids cannot access unconnected pores. Porosity is the ratio of pore volume to its total volume. Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and composition. Porosity is not controlled ...
Poromechanics is a branch of physics and specifically continuum mechanics that studies the behavior of fluid-saturated porous media. [1] A porous medium or a porous material is a solid, constituting the matrix, which is permeated by an interconnected network of pores or voids filled with a fluid.
At the microscopic and macroscopic levels, porous media can be classified. At the microscopic scale, the structure is represented statistically by the distribution of pore sizes, the degree of pore interconnection and orientation, the proportion of dead pores, etc. [4] The macroscopic technique makes use of bulk properties that have been averaged at scales far bigger than pore size.
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.
Gassmann fluid substitution requires that the porosity remain constant. The assumption being that, all other things being equal, different saturating fluids should not affect the porosity of the rock. This does not take into account diagenetic processes, such as cementation or dissolution, that vary with changing geochemical conditions in the ...
The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.
An example of a non-Boussinesq flow is bubbles rising in water. The behaviour of air bubbles rising in water is very different from the behaviour of water falling in air: in the former case rising bubbles tend to form hemispherical shells, while water falling in air splits into raindrops (at small length scales surface tension enters the ...