Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = () ...
2.3 The quotient rule. ... The derivative of the function at a point is the slope of the line tangent to the curve ... Differential of a function – Notion in calculus;
Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second derivative test; Extreme value theorem ...
The ratio in the definition of the derivative is the slope of the line through two points on the graph of the function , specifically the points (, ()) and (+, (+)). As h {\displaystyle h} is made smaller, these points grow closer together, and the slope of this line approaches the limiting value, the slope of the tangent to the graph of ...
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6
From January 2008 to May 2009, if you bought shares in companies when Richard C. Perry joined the board, and sold them when he left, you would have a -38.5 percent return on your investment, compared to a -38.2 percent return from the S&P 500.
This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f ′ reaches its mean value at some point in the interval. [5] Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)). [10]