Search results
Results from the WOW.Com Content Network
A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.
Introduction to Algorithms is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book is described by its publisher as "the leading algorithms text in universities worldwide as well as the standard reference for professionals". [ 1 ]
Download as PDF; Printable version; In other projects ... Pages in category "Algorithms and data structures" This category contains only the following page.
A retrieval data structure can be used to construct a perfect hash function: First insert the keys into a cuckoo hash table with = hash functions and buckets of size 1. Then, for every key store the index of the hash function that lead to a key's insertion into the hash table in a r {\displaystyle r} -bit retrieval data structure D ...
Many programs using associative arrays will need to store that data in a more permanent form, such as a computer file. A common solution to this problem is a generalized concept known as archiving or serialization, which produces a text or binary representation of the original objects that can be written directly to a file. This is most ...
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
For a graph with E edges and V vertices, Kruskal's algorithm can be shown to run in time O(E log E) time, with simple data structures. Here, O expresses the time in big O notation , and log is a logarithm to any base (since inside O -notation logarithms to all bases are equivalent, because they are the same up to a constant factor).