Search results
Results from the WOW.Com Content Network
In early afterburner installations, the pilot had to check the nozzle position indicator after selecting afterburner. If the nozzle did not open for some reason, and the pilot did not react by cancelling the afterburner selection, typical controls of that period [32] (e.g. the J47 in the F-86L), could cause the turbine blades to overheat and ...
A jet engine afterburner is an extended exhaust section containing extra fuel injectors. Since the jet engine upstream (i.e., before the turbine) will use little of the oxygen it ingests, additional fuel can be burned after the gas flow has left the turbines. When the afterburner is turned on, fuel is injected and igniters are fired.
Diagram of a typical gas turbine jet engine. Air is compressed by the compressor blades as it enters the engine, and it is mixed and burned with fuel in the combustion section. The hot exhaust gases provide forward thrust and turn the turbines which drive the compressor blades. 1. Intake 2. Low pressure compression 3. High pressure compression ...
The Pratt & Whitney J58 (company designation JT11D-20) is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds.
It was later adapted with an afterburner for supersonic designs, and in this form it was the world's first production afterburning turbofan, going on to power the F-111 and the F-14A Tomcat, as well as being used in early versions of the A-7 Corsair II without an afterburner. First flight of the TF30 was in 1964 and production continued until 1986.
The F-15 ACTIVE showing its 3D axisymmetric thrust vectoring nozzles on its F100-PW-229s. A variant of the -229 fitted with a 3-dimensional axisymmetric thrust vectoring nozzle, referred by Pratt & Whitney as the Pitch/Yaw Balance Beam Nozzle (P/YBBN), was tested on the F-15 ACTIVE (Advanced Control Technology for Integrated Vehicles) in the ...
The combustor then heats this air at constant pressure as the fuel/air mix burns. As it burns the fuel/air mix heats and rapidly expands. The burned mix is exhausted from the combustor through the nozzle guide vanes to the turbine. In the case of ramjet or scramjet engines, the exhaust is directly fed out through the nozzle.
The bleed flow, 20% at Mach 3, was returned to the engine via 6 external tubes to cool the afterburner liner and primary nozzle as well as to provide extra air for combustion. [30] The J58 engine was the only operational turbojet engine, being designed to operate continuously even at maximum afterburning, for Mach 3.2 cruise.