Search results
Results from the WOW.Com Content Network
The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then ...
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...
In mathematical optimization, the ordered subset expectation maximization (OSEM) method is an iterative method that is used in computed tomography.. In applications in medical imaging, the OSEM method is used for positron emission tomography (PET), for single-photon emission computed tomography (SPECT), and for X-ray computed tomography (X-ray CT) scans.
Multiple Expectation maximizations for Motif Elicitation (MEME) is a tool for discovering motifs in a group of related DNA or protein sequences. [ 1 ] A motif is a sequence pattern that occurs repeatedly in a group of related protein or DNA sequences and is often associated with some biological function.
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA, (spike & slab) sparse coding). Such a scheme optimizes a lower bound of the data likelihood, which is usually computationally intractable, and in doing so requires the discovery of q-distributions, or variational posteriors .
The MM algorithm is an iterative optimization method which exploits the convexity of a function in order to find its maxima or minima. The MM stands for “Majorize-Minimization” or “Minorize-Maximization”, depending on whether the desired optimization is a minimization or a maximization.