enow.com Web Search

  1. Ads

    related to: aristotelian triangle examples geometry problems and answers

Search results

  1. Results from the WOW.Com Content Network
  2. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  3. Aristotle's axiom - Wikipedia

    en.wikipedia.org/wiki/Aristotle's_axiom

    Aristotle's axiom is an axiom in the foundations of geometry, proposed by Aristotle in On the Heavens that states: If X O Y ^ {\displaystyle {\widehat {\rm {XOY}}}} is an acute angle and AB is any segment, then there exists a point P on the ray O Y → {\displaystyle {\overrightarrow {OY}}} and a point Q on the ray O X → {\displaystyle ...

  4. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares. [8] Snub is a construction process of polyhedra by separating the polyhedron faces, twisting their faces in certain angles, and filling them up with equilateral triangles .

  5. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.

  6. Aristotelian realist philosophy of mathematics - Wikipedia

    en.wikipedia.org/wiki/Aristotelian_realist...

    Aristotelian views of (cardinal or counting) numbers begin with Aristotle's observation that the number of a heap or collection is relative to the unit or measure chosen: "'number' means a measured plurality and a plurality of measures ... the measure must always be some identical thing predicable of all the things it measures, e.g. if the things are horses, the measure is 'horse'."

  7. On the Equilibrium of Planes - Wikipedia

    en.wikipedia.org/wiki/On_the_Equilibrium_of_Planes

    The lever and its properties were already well known before the time of Archimedes, and he was not the first to provide an analysis of the principle involved. [5] The earlier Mechanical Problems, once attributed to Aristotle but most likely written by one of his successors, contains a loose proof of the law of the lever without employing the concept of centre of gravity.

  8. Triangle of opposition - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_opposition

    In the system of Aristotelian logic, the triangle of opposition is a diagram [which?] representing the different ways in which each of the three propositions of the system is logically related ('opposed') to each of the others. The system is also useful in the analysis of syllogistic logic, serving to identify the allowed logical conversions ...

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra , a length is constructible if and only if it represents a constructible number , and an angle is constructible if and only if its cosine is a ...

  1. Ads

    related to: aristotelian triangle examples geometry problems and answers