Search results
Results from the WOW.Com Content Network
The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2]
The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...
Regular star polygons are not convex, and their Schläfli symbols {p / q} contain irreducible fractions p / q, where p is the number of vertices, and q is their turning number. Equivalently, {p / q} is created from the vertices of {p}, connected every q. For example, {5 ⁄ 2} is a pentagram; {5 ⁄ 1} is a pentagon.
A vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. This vertex figure has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for vertex-uniform polyhedra all the neighboring vertices are in the same plane and so this plane projection can be used to visually represent the vertex configuration.
In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, {5,3} + { }. Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles triangular faces, 70 edges, and 22 vertices.
Net. In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C 120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron [1] and hecatonicosahedroid.
The defect of any of the vertices of a regular dodecahedron (in which three regular pentagons meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°.
It has 54 faces (30 squares, 12 pentagons and 12 pentagrams), 120 edges and 60 vertices. [1] It is given a Schläfli symbol t 0,2 { 5 ⁄ 2 ,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron .