Search results
Results from the WOW.Com Content Network
The second pattern of potentially globally redundant proofs appearing in global redundancy definition is related to the well-known [further explanation needed] notion of regularity [further explanation needed]. Informally, a proof is irregular if there is a path from a node to the root of the proof such that a literal is used more than once as ...
It is often mentioned that common law statutes can be interpreted by using the Golden Rule, the Mischief Rule or the Literal Rule. However, according to Francis Bennion , author of texts on statutory interpretation, [ 8 ] there are no such simple devices to elucidate complex statutes, "[i]nstead there are a thousand and one interpretative ...
The first rule states that 0 is a natural number, and the second states that s(n) is a natural number if n is. In this proof system, the following rule, demonstrating that the second successor of a natural number is also a natural number, is derivable:
In Boolean algebra, the consensus theorem or rule of consensus [1] is the identity: ¯ = ¯ The consensus or resolvent of the terms and ¯ is . It is the conjunction of all the unique literals of the terms, excluding the literal that appears unnegated in one term and negated in the other.
The resolution rule in propositional logic is a single valid inference rule that produces a new clause implied by two clauses containing complementary literals. A literal is a propositional variable or the negation of a propositional variable.
The plain meaning rule, also known as the literal rule, is one of three rules of statutory construction traditionally applied by English courts. [1] The other two are the "mischief rule" and the "golden rule". The plain meaning rule dictates that statutes are to be interpreted using the ordinary meaning of the language of the statute.
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).