enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    The orange and green quadrilaterals are congruent; the blue is not congruent to them. All three have the same perimeter and area. (The ordering of the sides of the blue quadrilateral is "mixed" which results in two of the interior angles and one of the diagonals not being congruent.)

  3. Corresponding sides and corresponding angles - Wikipedia

    en.wikipedia.org/wiki/Corresponding_sides_and...

    The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Each diagonal divides the quadrilateral into two congruent triangles. The sum of the squares of the sides equals the sum of the squares of the diagonals. (This is the parallelogram law.) It has rotational symmetry of order 2. The sum of the distances from any interior point to the sides is independent of the location of the point. [4]

  6. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...

  7. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    Euler in 1778 proved Lexell's theorem analogously to Euclid's proof of Elements I.35 and I.37, as did Victor-Amédée Lebesgue independently in 1855, using spherical parallelograms – spherical quadrilaterals with congruent opposite sides, which have parallel small circles passing through opposite pairs of adjacent vertices and are in many ...

  8. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    The two complete quadrilaterals have a shared diagonal, EF. N lies on the Newton–Gauss line of both quadrilaterals. N is equidistant from G and H, since it is the circumcenter of the cyclic quadrilateral EGFH. If triangles GMP, HMQ are congruent, and it will follow that M lies on the perpendicular bisector of the line HG.

  9. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.