Search results
Results from the WOW.Com Content Network
Most 1-bromoalkanes are prepared by free-radical addition of hydrogen bromide to the 1-alkene, which is 1-pentene in the case of 1-bromopentane. These conditions lead to anti-Markovnikov addition, giving the 1-bromo derivative. [2] It is also formed by the reaction of 1-pentanol with hydrogen bromide.
1-Bromopropane (n-propylbromide or nPB) is a bromoalkane with the chemical formula CH 3 CH 2 CH 2 Br. It is a colorless liquid that is used as a solvent. It has a characteristic hydrocarbon odor.
Most 1-bromoalkanes are prepared by free-radical addition of hydrogen bromide to the 1-alkene. These conditions lead to the anti-Markovnikov addition, i.e. give the 1-bromo derivatives. [2] 1-Bromobutane can also be prepared from butanol by treatment with hydrobromic acid: [3] CH 3 (CH 2) 3 OH + HBr → CH 3 (CH 2) 3 Br + H 2 O
In organic chemistry, olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. [ 1 ] [ 2 ] Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative ...
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.
Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene: [6] Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of I 2 and Br 2, is the basis of the analytical method.
The preparation of EtBr stands as a model for the synthesis of bromoalkanes in general. It is usually prepared by the addition of hydrogen bromide to ethene: . H 2 C=CH 2 + HBr → H 3 C-CH 2 Br
Trans-alkenes are about 1 kcal/mol more stable than cis-alkenes. An example of this effect is cis- vs trans-2-butene. The difference is attributed to unfavorable non-bonded interactions in the cis isomer. This effects helps to explain the formation of trans-fats in food processing. In some cases, the isomerization can be reversed using UV-light.