Search results
Results from the WOW.Com Content Network
[1] [2] [3] Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m −2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m −1), at any point on a line ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material. Charge carrier densities involve equations concerning the electrical conductivity, related phenomena like the thermal conductivity, and chemicals bonds like covalent bond.
The equations introduce the electric field, E, a vector field, and the magnetic field, B, a pseudovector field, each generally having a time and location dependence. The sources are the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J.
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
We introduce the polarization density P, which has the following relation to E and D: = + and the following relation to the bound charge: = Now, consider the three equations: = = = The key insight is that the sum of the first two equations is the third equation.
Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per unit volume of the system kat⋅m −3: L −3 T −1 N: intensive Chemical ...
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.