enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charge density - Wikipedia

    en.wikipedia.org/wiki/Charge_density

    [1] [2] [3] Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m −2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m −1), at any point on a line ...

  3. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  4. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units , it is measured in m −3 . As with any density , in principle it can depend on position.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per unit volume of the system kat⋅m −3: L −3 T −1 N: intensive Chemical ...

  6. Surface charge - Wikipedia

    en.wikipedia.org/wiki/Surface_charge

    A surface charge is an electric charge present on a two-dimensional surface. These electric charges are constrained on this 2-D surface, and surface charge density , measured in coulombs per square meter (C•m −2 ), is used to describe the charge distribution on the surface.

  7. Linear density - Wikipedia

    en.wikipedia.org/wiki/Linear_density

    Consider a long, thin wire of charge and length .To calculate the average linear charge density, ¯, of this one dimensional object, we can simply divide the total charge, , by the total length, : ¯ = If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: = Each infinitesimal unit of charge, , is equal to ...

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.

  9. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    R is a region containing all the points at which the charge density is nonzero; r ' is a point inside R; and; ρ(r ') is the charge density at the point r '. The equations given above for the electric potential (and all the equations used here) are in the forms required by SI units.