Search results
Results from the WOW.Com Content Network
A common alternative to using dictionaries is the hashing trick, where words are mapped directly to indices with a hashing function. [5] Thus, no memory is required to store a dictionary. Hash collisions are typically dealt via freed-up memory to increase the number of hash buckets [clarification needed]. In practice, hashing simplifies the ...
This facet of word2vec has been exploited in a variety of other contexts. For example, word2vec has been used to map a vector space of words in one language to a vector space constructed from another language. Relationships between translated words in both spaces can be used to assist with machine translation of new words. [27]
Several serialization formats have been built on or from the JSON specification. Examples include GeoJSON, a format designed for representing simple geographical features [65] [66] JSON-LD, a method of encoding linked data using JSON [67] [68] JSON-RPC, a remote procedure call protocol encoded in JSON [69]
JSON Pointer [10] defines a string syntax for identifying a single value within a given JSON value of known structure. JSONiq [11] is a query and transformation language for JSON. XPath 3.1 [12] is an expression language that allows the processing of values conforming to the XDM [13] data model. The version 3.1 of XPath supports JSON as well as ...
Flow diagram. In computing, serialization (or serialisation, also referred to as pickling in Python) is the process of translating a data structure or object state into a format that can be stored (e.g. files in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer ...
For example, one could define a dictionary having a string "toast" mapped to the integer 42 or vice versa. The keys in a dictionary must be of an immutable Python type, such as an integer or a string, because under the hood they are implemented via a hash function. This makes for much faster lookup times, but requires keys not change.
JSON-LD is designed around the concept of a "context" to provide additional mappings from JSON to an RDF model. The context links object properties in a JSON document to concepts in an ontology. In order to map the JSON-LD syntax to RDF, JSON-LD allows values to be coerced to a specified type or to be tagged with a language.
The synonyms are grouped into synsets with short definitions and usage examples. It can thus be seen as a combination and extension of a dictionary and thesaurus . While it is accessible to human users via a web browser , [ 2 ] its primary use is in automatic text analysis and artificial intelligence applications.