enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedral number - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_number

    A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The n th tetrahedral number, Te n , is the sum of the first n triangular numbers , that is,

  3. Geometry index - Wikipedia

    en.wikipedia.org/wiki/Geometry_index

    where: α and β are the two greatest valence angles of coordination center; θ = cos −1 (− 1 ⁄ 3) ≈ 109.5° is a tetrahedral angle. When τ 4 is close to 0 the geometry is similar to square planar, while if τ 4 is close to 1 then the geometry is similar to tetrahedral.

  4. Centered tetrahedral number - Wikipedia

    en.wikipedia.org/wiki/Centered_tetrahedral_number

    In mathematics, a centered tetrahedral number is a centered figurate number that represents a tetrahedron. That is, it counts the dots in a three-dimensional dot pattern with a single dot surrounded by tetrahedral shells. [1] The th centered tetrahedral number, starting at = for a single dot, is: [2] [3]

  5. Figurate number - Wikipedia

    en.wikipedia.org/wiki/Figurate_number

    Figurate numbers were a concern of the Pythagorean worldview. It was well understood that some numbers could have many figurations, e.g. 36 is a both a square and a triangle and also various rectangles. The modern study of figurate numbers goes back to Pierre de Fermat, specifically the Fermat polygonal number theorem.

  6. Pascal's pyramid - Wikipedia

    en.wikipedia.org/wiki/Pascal's_pyramid

    Each number in any layer is a coefficient of the trinomial distribution and the trinomial expansion. This non-linear arrangement makes it easier to: display the trinomial expansion in a coherent way; compute the coefficients of the trinomial distribution; calculate the numbers of any tetrahedron layer.

  7. Cannonball problem - Wikipedia

    en.wikipedia.org/wiki/Cannonball_problem

    A triangular-pyramid version of the cannonball problem, which is to yield a perfect square from the N th Tetrahedral number, would have N = 48. That means that the (24 × 2 = ) 48th tetrahedral number equals to (70 2 × 2 2 = 140 2 = ) 19600. This is comparable with the 24th square pyramid having a total of 70 2 cannonballs. [5]

  8. AOL Mail is free and helps keep you safe.

    mail.aol.com/?offerId=netscapeconnect-en-us

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is