enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    At chemical equilibrium, the reaction quotient Q r of the product activity (a Red) by the reagent activity (a Ox) is equal to the equilibrium constant (K) of the half-reaction and in the absence of driving force (ΔG = 0) the potential (E red) also becomes nul. The numerically simplified form of the Nernst equation is expressed as:

  3. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...

  4. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°, where z electrons are transferred, and the Faraday constant F is the conversion factor describing Coulombs transferred per mole electrons. Those Gibbs free energy ...

  5. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  6. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reduction–oxidation [2] or oxidation–reduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4]

  7. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.

  8. Oxygen reduction reaction - Wikipedia

    en.wikipedia.org/wiki/Oxygen_reduction_reaction

    In chemistry, the oxygen reduction reaction refers to the reduction half reaction whereby O 2 is reduced to water or hydrogen peroxide. In fuel cells, the reduction to water is preferred because the current is higher. The oxygen reduction reaction is well demonstrated and highly efficient in nature. [1] [2]

  9. Standard hydrogen electrode - Wikipedia

    en.wikipedia.org/wiki/Standard_hydrogen_electrode

    The reaction quotient (Q r) of the half-reaction is the ratio between the chemical activities (a) of the reduced form (the reductant, a red) and the oxidized form (the oxidant, a ox). = Considering the 2 H + / H 2 redox couple: