Search results
Results from the WOW.Com Content Network
Abstract index notation handles braiding as follows. On a particular tensor product, an ordering of the abstract indices is fixed (usually this is a lexicographic ordering). The braid is then represented in notation by permuting the labels of the indices. Thus, for instance, with the Riemann tensor
Tensor [4] is a tensor package written for the Mathematica system. It provides many functions relevant for General Relativity calculations in general Riemann–Cartan geometries. Ricci [5] is a system for Mathematica 2.x and later for doing basic tensor analysis, available for free.
In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar, vector and linear operator, in a way that is independent of any chosen frame of reference. For example, doing rotations over axis does not affect at all the properties of tensors, if a transformation law is followed.
Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K {\displaystyle \alpha :V\rightarrow K} .
Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. In mathematics and physics, Penrose graphical notation or tensor diagram notation is a (usually handwritten) visual depiction of multilinear functions or tensors proposed by Roger Penrose in 1971. [1]
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
Tensor calculus has many applications in physics, engineering and computer science including elasticity, continuum mechanics, electromagnetism (see mathematical descriptions of the electromagnetic field), general relativity (see mathematics of general relativity), quantum field theory, and machine learning.
The earliest foundation of tensor theory – tensor index notation. [1] Order of a tensor The components of a tensor with respect to a basis is an indexed array. The order of a tensor is the number of indices needed. Some texts may refer to the tensor order using the term degree or rank. Rank of a tensor The rank of a tensor is the minimum ...