Search results
Results from the WOW.Com Content Network
CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
Pandas also supports the syntax data.iloc[n], which always takes an integer n and returns the nth value, counting from 0. This allows a user to act as though the index is an array-like sequence of integers, regardless of how it's actually defined. [9]: 110–113 Pandas supports hierarchical indices with multiple values per data point.
SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
import theano from theano import tensor # Declare two symbolic floating-point scalars a = tensor. dscalar b = tensor. dscalar # Create a simple expression c = a + b # Convert the expression into a callable object that takes (a, b) # values as input and computes a value for c f = theano. function ([a, b], c) # Bind 1.5 to 'a', 2.5 to 'b', and evaluate 'c' assert 4.0 == f (1.5, 2.5)