Search results
Results from the WOW.Com Content Network
The details of how sequences of DNA instruct cells to make specific proteins was worked out by molecular biologists during the period from 1953 to 1965. Francis Crick played an integral role in both the theory and analysis of the experiments that led to an improved understanding of the genetic code. [6]
Sequences are presented from the 5' to 3' end and determine the covalent structure of the entire molecule. Sequences can be complementary to another sequence in that the base on each position is complementary as well as in the reverse order. An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a sense ...
DNA sequencing is the process of determining the nucleotide sequence of a given DNA fragment. The sequence of the DNA of a living thing encodes the necessary information for that living thing to survive and reproduce. Therefore, determining the sequence is useful in fundamental research into why and how organisms live, as well as in applied ...
Therefore in this book I will consider genes as DNA sequences encoding information for functional products, be it proteins or RNA molecules. With 'encoding information', I mean that the DNA sequence is used as a template for the production of an RNA molecule or a protein that performs some function. [5]
[2] This selection of codewords (sequences of DNA oligonucleotides) is a major hurdle in itself due to the phenomenon of secondary structure formation (in which DNA strands tend to fold onto themselves during hybridization and hence rendering themselves useless in further computations. This is also known as self-hybridization).
The equalities G = C and A = T suggested that these bases were paired, this pairing being the basis of the DNA structure that is now known to be correct. Conversely the inequalities G ≠ A etc. meant that DNA could not have a systematic repetition of a fundamental unit, as required by the tetranucleotide hypothesis.
The split gene theory is a theory of the origin of introns, long non-coding sequences in eukaryotic genes between the exons. [1] [2] [3] The theory holds that the randomness of primordial DNA sequences would only permit small (< 600bp) open reading frames (ORFs), and that important intron structures and regulatory sequences are derived from stop codons.
DNA exists in many possible conformations that include A-DNA, B-DNA, and Z-DNA forms, although only B-DNA and Z-DNA have been directly observed in functional organisms. [14] The conformation that DNA adopts depends on the hydration level, DNA sequence, the amount and direction of supercoiling, chemical modifications of the bases, the type and ...