enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce ...

  5. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    From the perspective of statistical learning theory, supervised learning is best understood. [4] Supervised learning involves learning from a training set of data. Every point in the training is an input–output pair, where the input maps to an output. The learning problem consists of inferring the function that maps between the input and the ...

  6. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Supervised learning; ... (e.g., misclassified examples). ... This algorithm is conceptually simple, easy to implement, generally faster, and has better scaling ...

  7. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...

  8. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    Statistical classification is a problem studied in machine learning in which the classification is performed on the basis of a classification rule. It is a type of supervised learning, a method of machine learning where the categories are predefined, and is used to categorize new probabilistic observations into said categories. When there are ...

  9. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    Depending on the type and variation in training data, machine learning can be roughly categorized into three frameworks: supervised learning, unsupervised learning, and reinforcement learning. Multiple instance learning (MIL) falls under the supervised learning framework, where every training instance has a label, either discrete or real valued ...