enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    Note that the exergy flux of graybody radiation can be a small fraction of the energy flux. For example, the ratio of exergy flux to energy flux (/) for graybody radiation with emissivity = is equal to 40.0%, for = and = (=). That is, a maximum of only 40% of the graybody energy flux can be converted to work in this case (already only 50% of ...

  3. Exergy efficiency - Wikipedia

    en.wikipedia.org/wiki/Exergy_efficiency

    The destruction of exergy is closely related to the creation of entropy and as such any system containing highly irreversible processes will have a low energy efficiency. As an example the combustion process inside a power stations gas turbine is highly irreversible and approximately 25% of the exergy input will be destroyed here.

  4. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    The amount of energy carried by a photon of light is determined by its wavelength. In lumens, this energy is offset by the eye's sensitivity to the selected wavelengths. For example, a green laser pointer can have greater than 30 times the apparent brightness of a red pointer of the same power output. At 555 nm in wavelength, 1 watt of radiant ...

  5. Energy quality - Wikipedia

    en.wikipedia.org/wiki/Energy_quality

    Energy quality is a measure of the ease with which a form of energy can be converted to useful work or to another form of energy: i.e. its content of thermodynamic free energy. A high quality form of energy has a high content of thermodynamic free energy, and therefore a high proportion of it can be converted to work; whereas with low quality ...

  6. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    Second law analysis is valuable in scientific and engineering analysis in that it provides a number of benefits over energy analysis alone, including the basis for determining energy quality (exergy content [66] [67] [68]), understanding fundamental physical phenomena, and improving performance evaluation and optimization. As a result, a ...

  8. Better Energy Stock: QuantumScape vs. NuScale Power - AOL

    www.aol.com/better-energy-stock-quantumscape-vs...

    QuantumScape's first battery, the QSE-5, has an energy density of over 800 Wh/L (watt-hours per liter) -- versus the average density of 300 to 700 Wh/L for lithium-ion batteries -- and can be ...

  9. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...