Search results
Results from the WOW.Com Content Network
While electronegativity increases along periods in the periodic table, and decreases down groups, electropositivity decreases along periods (from left to right) and increases down groups. This means that elements in the upper right of the periodic table of elements (oxygen, sulfur, chlorine, etc.) will have the greatest electronegativity, and ...
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
Counterintuitively, E ea does not decrease when progressing down most columns of the periodic table. For example, E ea actually increases consistently on descending the column for the group 2 data. Thus, electron affinity follows the same "left-right" trend as electronegativity, but not the "up-down" trend. The following data are quoted in kJ/mol.
Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3 ; it is usually shown at the foot of the table to save horizontal space.
Oxygen is a chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and a potent oxidizing agent that readily forms oxides with most elements as well as with other compounds.
In many cases, multiple configurations are within a small range of energies and the small irregularities that arise in the d- and f-blocks are quite irrelevant chemically. [1] The construction of the periodic table ignores these irregularities and is based on ideal electron configurations.