enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unit-weighted regression - Wikipedia

    en.wikipedia.org/wiki/Unit-weighted_regression

    The prediction is obtained by adding these products along with a constant. When the weights are chosen to give the best prediction by some criterion, the model referred to as a proper linear model. Therefore, multiple regression is a proper linear model. By contrast, unit-weighted regression is called an improper linear model.

  3. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression can be used to estimate the values of β 1 and β 2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β 1 and β 2; if we take regressors x i = (x i1, x i2) = (t i, t i 2), the model takes on the standard form

  4. Proper linear model - Wikipedia

    en.wikipedia.org/wiki/Proper_linear_model

    In statistics, a proper linear model is a linear regression model in which the weights given to the predictor variables are chosen in such a way as to optimize the relationship between the prediction and the criterion. Simple regression analysis is the most common example of a proper linear model.

  5. Misleading graph - Wikipedia

    en.wikipedia.org/wiki/Misleading_graph

    [7] The usage of thin slices, which are hard to discern, may be difficult to interpret. [7] The usage of percentages as labels on a pie chart can be misleading when the sample size is small. [8] Making a pie chart 3D or adding a slant will make interpretation difficult due to distorted effect of perspective. [9]

  6. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b' , where b' is the projection of b onto the column space of A .

  8. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    There is a direct correspondence between n-by-n square matrices and linear transformations from an n-dimensional vector space into itself, given any basis of the vector space. Hence, in a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices , or the language of linear ...

  9. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.