enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compressible flow - Wikipedia

    en.wikipedia.org/wiki/Compressible_flow

    In compressible flow, however, the gas density and temperature also become variables. This requires two more equations in order to solve compressible-flow problems: an equation of state for the gas and a conservation of energy equation. For the majority of gas-dynamic problems, the simple ideal gas law is the appropriate state equation.

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Because the energy per unit mass of liquid in a well-mixed reservoir is uniform throughout, Bernoulli's equation can be used to analyze the fluid flow everywhere in that reservoir (including pipes or flow fields that the reservoir feeds) except where viscous forces dominate and erode the energy per unit mass. [6]: Example 3.5 and p.116

  4. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility [1] or, if the temperature is held constant, the isothermal compressibility [2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.

  5. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...

  6. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.

  7. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    Compressibility factor values are usually obtained by calculation from equations of state (EOS), such as the virial equation which take compound-specific empirical constants as input. For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated.

  8. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions. The conservation of momentum equations for the compressible, viscous flow case is called the Navier–Stokes equations. [2] Conservation of energy

  9. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The properties molar internal energy, , and entropy, , defined by the first and second laws of thermodynamics, hence all thermodynamic properties of a simple compressible substance, can be specified, up to a constant of integration, by two measurable functions, a mechanical equation of state, = (,), and a constant volume specific heat, (,).